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Efficient Electromagnetic Analysis of a Doubly
Infinite Array of Rectangular Apertures

Andrew W. Mathis,Student Member, IEEE,and Andrew F. Peterson,Senior Member, IEEE

Abstract—An accurate and rapid method is presented for solv-
ing the magnetic field integral equation for the equivalent mag-
netic currents representing a doubly periodic array of rectangular
apertures. Ewald’s method is used to accelerate the summations
associated with periodic Green’s function, allowing the Green’s
function to be determined to nearly machine precision. Galerkin’s
method is used to discretize the integral equation with Chebyshev
polynomials used as the basis and testing functions. Efficient
treatment of the “self-term” singularity is emphasized.

Index Terms—Diffraction gratings, electromagnetic scattering,
frequency selective surfaces, moment methods.

I. INTRODUCTION

T HE SCATTERING from a periodically perforated con-
ducting plane has important applications such as shield-

ing, bandpass radomes, antenna reflectors, and ground planes
for integrated circuits. Over the last few years, the accurate
modeling of rectangular aperture arrays has also become
increasingly important for thin-film multichip modules incor-
porating one or more perforated ground planes.

The methods used to solve the periodic aperture problem,
as well as the complementary problem, scattering from a
periodic array of plates, are various. Kieburtz and Ishimaru
investigated the aperture problem employing a variational
approach [1]. Chen solved both problems by discretizing the
electric field or current density by orthogonal mode functions
[2], [3]. Rubin and Bertoni used rooftop basis functions and
razor-blade testing functions to solve for the current on the
conductor surrounding arbitrarily shaped apertures [4]. This
type of expansion is used in later work to analyze signal lines
above a periodically perforated ground plane [5], [6]. Chan and
Mittra refine this subsectional current approximation by using
rooftop testing functions (Galerkin’s method) [7], [8]. Pan,
Zhu, and Gilbert approximate the equivalent magnetic current
above the apertures in a periodically perforated ground plane
[9]. In addition, they also use higher order basis functions to
accelerate convergence of the doubly infinite summation in
the periodic Green’s function.

None of the methods above employ the exponentially con-
verging form of the periodic Green’s function developed by
Jordon, Richter, and Sheng [10], which is based on Ewald’s
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Fig. 1. A wave incident on a conducting plane periodically perforated with
rectangular apertures.

method [11]. For methods in [1]–[9], the convergence of the
periodic Green’s function is algebraic. At some point, the
doubly infinite series of the Green’s function is truncated,
and with algebraic convergence it is difficult to determine
the resulting truncation error. Ewald’s method allows one to
rapidly determine the value of the periodic Green’s function
to a prescribed accuracy (within a decimal place of machine
precision) and eliminate truncation error as a major source
of error. However, neither the original articles on Ewald’s
method, nor subsequent articles by Cohen [12], [13], describe
a complete implementation and, in particular, how to handle
the “self-term” in the integral equation formulation (where the
source and observation regions coincide).

The purpose of this article is to present a complete imple-
mentation of the exponentially converging periodic Green’s
function for the problem involving an infinite periodic array
of rectangular apertures in a ground plane. The approach pre-
sented herein employs the magnetic field integral equation and
solves for the equivalent magnetic current within the apertures.
Galerkin’s method is used to discretize the integral equation
with Chebyshev polynomials and their associated weights as
the basis and testing functions. Entire domain functions which
incorporate the edge singularity have been shown to require
significantly fewer unknowns than subsectional basis functions
or functions that do not incorporate the edge singularity [14],
[15]. The use of entire domain basis functions implies that each
element of the admittance matrix will require integration over a
singularity when the source and observation regions coincide.
To gain full advantage of Ewald’s method, the singularity must
be taken into account.

The geometry under consideration is depicted in Fig. 1. The
apertures are rectangles of dimensions . The center of
the 00th aperture has the coordinate value .
The entire structure exhibits periodicity in the -direction
and in the -direction. A plane wave is incident upon the
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screen at an angle from the normal -direction and at angle
from the -direction.

II. FORMULATION

The magnetic field integral equation for the equivalent
magnetic current which is an infinitesimal distance above an
aperture in a periodically perforated screen is

(1)

where denotes a single aperture of the array, is the
equivalent magnetic current, is the incident magnetic
field produced in the aperture, and is the three-dimensional
(3-D) periodic Green’s function.

The spectral domain form of the 3-D periodic Green’s
function, assuming , is

(2)

where . Ewald’s transformation of the
3-D periodic Green’s function reduces to an error function
transform (EFT) [16] when and is written as [10]

(3)

where

(4)

(5)

and

(6)

where is the summation of the positive and the negative
arguments. is an arbitrarily chosen parameter that splits the
computational burden between (4) and (5). The larger the value
of , the more weight (4) carries. Applying the Poisson sum
transformation to (5) with respect to bothand yields

(7)

Since , adding (4) and (7) results in (2).
Equations (4) and (5) are the EFT of the series in (2).

The magnetic-current components are assumed to have the
form

(8)

(9)

where are unknown coefficients and and are th-
order Chebyshev polynomials of the first and second kind,
respectively [17]. The equivalent magnetic current displays
an inverse square-root singularity at the edges tangential to
the direction of the current, and it must vanish at the edges
normal to the direction of current. The Chebyshev functions
satisfy both of the boundary conditions and are expected to
converge rapidly to the solution. In a one-dimensional (1-D)
case, three to four basis functions per wavelength are often
deemed sufficient [18].

Using Galerkin’s method to discretize the integral equation
(1) yields a matrix equation with admittance elements of the
form

(10)

where

if

if

(11)

and * represents the two-dimensional (2-D) convolution op-
erator. and represent the number of basis functions
in the - and -directions, respectively. The spectral-domain
representation of the Green’s functions (4), (7) allows one to
perform the convolutions in (10) analytically. With the help
of (A.1) and (A.2), one obtains

(12)

and

(13)
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where is the th-order Bessel
function of the first kind, and the subscriptsand denote
a copolarization and a cross-polarization admittance term,
respectively. Directional notation has been dropped since
the admittance elements have the same form regardless of
direction. The complementary error function appearing in both
equations decays exponentially, and from (5), the error func-
tion displays a similar exponential convergence in the space
domain. If the convolutions of (10) were performed using the
space-domain Green’s function of (5), the four-dimensional
(4-D) numerical integration of a singular function is required.
This method is numerically tedious if high accuracy is de-
sired, especially if large apertures are under consideration.
Consequently, a more efficient means of computing the space-
domain part of the admittance element is sought.

III. RAPID SOLUTION TO THE INTEGRAL EQUATION

The method employed here is to use Poisson’s sum transfor-
mation of the error function terms of (12) and (13). Poisson’s
sum transformation is defined as

(14)

where is the Fourier transform of . If the parameter is
chosen large enough, only the , term is required to
accurately approximate the space-domain part of the Green’s
function, (5). Due to the singularity associated with the “self-
term,” no value of is large enough so that the space-domain
part of the summation is negligible [16]. Since the aperture
is centered at , the required inverse Fourier
transforms reduce to

(15)

and

(16)

The integral occurs in both copolarization admittance
elements (12) and cross-polarization admittance elements (13),
but the integral occurs only in the copolarization elements.
Using the definition of the error function (A.21), (15) can be
written as

(17)

If or is odd, then . If not, the integral
(A.3) is used to write (17) as

(18)

where is a generalized hypergeometric function,
and . One notes the conditions of (A.3)

are satisfied for . The generalized hypergeometric
function is defined in (A.4). Following the same procedure,
we can write (16) as

(19)

For copolarization elements, the minimum values ofand
are two and zero, respectively. For and , the

conditions of (A.3) are satisfied. At first glance, the above inte-
grals (18) and (19) appear to have strong singularities at ,
but these singularities are removable using the asymptotic
expansion of the generalized hypergeometric function.

After substituting the asymptotic expansion derived in the
Appendix for the hypergeometric function, we write (18) and
(19) as

(20)

(21)
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where is the number of terms used in the asymptotic
expansions. The coefficients , , and are defined as

(22)

(23)

(24)

(25)

(26)

where and are the coefficients of the asymp-
totic approximation of the hypergeometric function that de-
pend on the values of , , and . When , the
asymptotic approximation of ( , , ; , , ; )
is used, and when , the asymptotic approximation of
( , , ; , , ; ) is used (see Appendix).

The value of is assumed to be large; hence, the exponen-
tial term can be written as a power series as follows:

(27)

The power series (27) is multiplied with the power series in
(22)–(26), and the result is integrated term-by-term. We can
write the admittance elements as

(28)

and

(29)

where and are the truncation values. and are
functions of , , , , , and defined as

(30)

(31)

where is

(32)

The definitions of and are similar, and

(33)

which is easily integrated analytically.

IV. THE PARAMETER

The choice of directly relates to the convergence rate of
the summations in (28) and (29). The parameterneeds to be
chosen large enough so that only the 00th term is needed to
accurately represent the space-domain part of the admittance
element, yet should be as small as possible so the spectral-
domain part will converge rapidly. If one ignores the algebraic
decay of (5), one finds that (5) decays as

(34)

If the truncation error of the space-domain part is to be less
than then

(35)

where is the minimum distance between apertures. Ifis
small, must be large and can be approximated as

(36)

If is not small

(37)

will satisfy (35). There are two other constraints on:
needs to be chosen large enough so that the asymp-

totic approximation of the hypergeometric function and the
power series expansion of (27) converge rapidly. If

then the asymptotic expansions usually
converge to 15 significant figures within five to ten terms. If



50 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 1, JANUARY 1998

TABLE I
CONVERGENCE OF COEFFICIENTS

, the power series of (27) will converge rapidly over
the entire range of integration. To summarize,is typically
chosen as

(38)

For small apertures , the first condition dominates,
for medium apertures , the second condi-
tion dominates, and for large apertures , the third
condition dominates. To determine where to truncate the
summation, we ignore the algebraic decay of the spectral-
domain summation and only use the exponential decay from
complementary error function. The truncation values

and are appropriate.

V. RESULTS

Although the implementation of the spectral-domain part
of the admittance element is straightforward, the majority of
the computational effort goes to evaluating the summations in
(28) and (29). This is due to the four Bessel functions and the
complementary error function that must be computed. If the
argument of the complementary error functions is imaginary,
the algorithm of [19] and [20], which is a refined version
of [21] and [22], can be used. If the argument is real, then
a Chebyshev approximation can be used [23]. The Bessel
functions are computed using routines from NETLIB1 written
by Cody. Efficient evaluation of and relies on rapidly
computing the values of the coefficients of the asymptotic
expansion of the generalized hypergeometric functions. Typ-
ically is sufficient for seven significant figures of
accuracy and is sufficient for 15 significant figures of
accuracy. All calculations were performed in double precision
(16 significant figures).

Consider a conducting plane with apertures
and a periodicity of excited by an
incident plane wave . For this case,

ensures that each admittance element has converged to
15 significant figures. Typically less accuracy is required,
and can be decreased. In Fig. 2, the relative error of a
copolarization admittance element truncated at is
shown for differing values of the parameter. The admittance

1Available at http://www.netlib.org/.

Fig. 2. The relative error of the admittance element corresponding to
n

0
= n = m0

= m = 0 truncated atP = Q.

element corresponds to . The
is determined by setting and

. As is expected, the summation converges slower as
increases, but exponential convergence is observed for all
finite . When , the admittance element reverts
completely to the spectral domain and converges at the rate

as .
In Fig. 3, the real and imaginary parts of the equivalent

magnetic current in the-direction normalized with respect to
the incident electric field are shown. For Fig. 3, the number
of basis functions is . This implies that the
coefficients of interest are for .
The superscripts and correspond to the order of the
Chebyshev polynomials as described in (8) and (9). The
choices and ensure 15 digits of
accuracy. Thus, the discretization error inherent in Galerkin’s
method is the only significant source of error, i.e., truncation
error is negligible. In Fig. 4, the magnitude of the normalized
magnetic current in the -direction along a line
tangential to the current is plotted for various basis sets

As expected, the solution rapidly converges.
In Table I, the values of the coefficients , , ,

and are shown for differing . These
coefficients are the dominant coefficients that appear in all
the basis sets for . The power transmission



MATHIS AND PETERSON: EFFICIENT ELECTROMAGNETIC ANALYSIS OF DOUBLY INFINITE ARRAY OF RECTANGULAR APERTURES 51

Fig. 3. The real and imaginary part of thex-directed magnetic current nor-
malized with respect to the incident electric fieldEEE = ŷ�e�jkz . The aperture
dimensions area = b = 0:5� and the periodicity isDx = Dy = 1:75�.

coefficient is shown for the various basis sets, and the
transmission converges to five digits of accuracy for

. The relative time required to solve the integral
equation for the various sets of basis functions is also shown.
This time includes both the matrix fill and matrix solve time
and is normalized with respect to the time required for the

case. It should be noted that the value
overly restricts the efficiency for this example. If

is dropped to 5.4 (ensuring eight significant figures of accuracy
in the admittance elements), then and the time
required for the case is reduced by 87% with
no significant change in the dominant coefficients.

In Fig. 5, the power transmission coefficient versus period-
icity is presented. The magnetic field is incident
on an array of square apertures with a periodicity of

. The ratio of aperture size to periodicity is held
at . The power transmitted is compared to the
measured data from [24]. Good agreement is obtained between
the two.

VI. CONCLUSION

A method is presented for rapidly and accurately solving
the magnetic field integral equation for doubly periodic array

Fig. 4. The magnitude of the normalized magnetic current in thex-direction
along a line(y = 0) tangential to the current for various sets of basis
functions. The geometry of the problem is identical to that of Fig. 3.

Fig. 5. The magnitude of the power transmission coefficient versus period-
icity Dx. The aperture dimensions area = b = 0:39Dx, and the incident
magnetic field isHHH = x̂e�jkz .

of rectangular apertures. The technique is based on Ewald’s
method for accelerating the periodic Green’s function, which
if used correctly, reduces the truncation error so that it is
negligible compared to the discretization error. This method
works very well for small-to-medium size apertures. As the
aperture size increases,also increases, making the spectral-
domain summation more expensive.

Although this technique is discussed in the context of rectan-
gular apertures, it can be generalized to other aperture shapes.
The integral (A.3) is derived by converting the product of two
Bessel functions into the hypergeometric function . The
integral from zero to infinity of the hypergeometric function

multiplied by a Gaussian function is the hypergeometric
function [27]. Thus, the technique can be generalized
when the spectral-domain representation of the basis and
testing functions can be expressed in terms of a hypergeometric
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function and the basis and testing functions are centered about
the same point ( , , and ).

MATHEMATICAL APPENDIX

This appendix summarizes several results used in the pre-
vious sections.

A. Useful Integrals

The Fourier transforms of the Chebyshev basis functions
are given by the following integrals [17]:

(A.1)

(A.2)

The following integral is used in determining the space-domain
contribution of the 00th plate [see (17) and (18)] [25]:

(A.3)

where and

B. Asymptotic Approximation of ( , , ; , , ; )

Methods are readily available for determining the asymp-
totic approximation of generalized hypergeometic functions if

, , do not differ by an integer [26], [27]. From (18)
and (19), will equal zero or one; hence, we need to
derive an asymptotic approximation that is valid for
equal to an integer. The function ( , , ; , , ;

) is defined as

(A.4)

where is the Gamma function. We can write the above series
in terms of the following inverse Mellin transform:

(A.5)

Extending the path of integration counterclockwise to make a
semicircle with a radius of infinity, one finds the value of the

integral equals the sum of the residues of the simple
poles from the term. Thus, one regains (A.4). Equation
(A.5) is equivalent to using the definition of the Meijer G
function to express the hypergeometric function [25]–[27].

To obtain an asymptotic approximation of ( , , ;
, , ; ), we extend the path of integration clockwise

to form a semicircle encompassing the positive real values for
. If and do not differ by an integer then the integral is

evaluated by summing the residues from the simple poles at
, , . If does equal an integer,

some or all of the poles will be double poles and one must
differentiate the nonsingular part of the integrand of (A.5) to
determine the residue. There are two cases of interest
and . For the case , the residues are

(A.6)

where

(A.7)

(A.8)

and is the digamma function. For the case , the
residues from the double poles are

(A.9)

where

(A.10)

(A.11)

The residue from the single pole at is . For both
cases, the residues from the single poles at equal

(A.12)

where

(A.13)
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Using the values of the residues, the asymptotic approximation
for hypergeometric function in (18) is

(A.14)

where for general arguments (, , , , , ):

(A.15)

(A.16)

(A.17)

The hypergeometric function in (19) has the asymptotic ex-
pansion

(A.18)

where , , and are defined similar to (A.15)–(A.17),
except . For the values of the arguments, ,

, under consideration in (18) and (19), and,
consequently, . This is because , , , and
differ by integers and ; hence, either
or will equal infinity. This means that all
functions generated in (18) and (19) are reducible to
or combinations of . For example, if then

; hence

(A.19)

If and (or vice-versa) in (18), we obtain

(A.20)

Further details on obtaining an asymptotic expansion from
a power series can be found in [28]. It should be noted that the
above asymptotic approximation is only valid for large positive
values of . Due to the essential singularity at , (A.4)
cannot be used to obtain an asymptotic approximation valid
for . For large negative values forwhere higher order
terms dominate the summation of (A.4), the hypergeometric
function increases exponentially with .

C. The Error Function

The error function and the complementary error function
are defined, respectively, as

(A.21)

(A.22)

As , the complementary error function behaves as

(A.23)
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