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Efficient Electromagnetic Analysis of a Doubly
Infinite Array of Rectangular Apertures

Andrew W. Mathis,Student Member, IEEEANd Andrew F. Petersoigenior Member, IEEE

Abstract—An accurate and rapid method is presented for solv-
ing the magnetic field integral equation for the equivalent mag-
netic currents representing a doubly periodic array of rectangular
apertures. Ewald’s method is used to accelerate the summations
associated with periodic Green'’s function, allowing the Green’s
function to be determined to nearly machine precision. Galerkin’s
method is used to discretize the integral equation with Chebyshev
polynomials used as the basis and testing functions. Efficient
treatment of the “self-term” singularity is emphasized.

Index Terms—Diffraction gratings, electromagnetic scattering,

frequency selective surfaces, moment methods. Fig. 1. A wave incident on a conducting plane periodically perforated with
rectangular apertures.

I. INTRODUCTION

HE SCATTERING from a periodically perforated Con_method [11]. For methods in [1]-[9], the convergence of the
eriodic Green’s function is algebraic. At some point, the

ducting plane has important applications such as shie v infini ) f the G s f =0 q
ing, bandpass radomes, antenna reflectors, and ground pl y In Inite SEries o the reens u_n(_:t|on IS truncat_e '
with algebraic convergence it is difficult to determine

for integrated circuits. Over the last few years, the accur 8 . . ,
modeling of rectangular aperture arrays has also beco _resultmg tr_uncat|on error. Ewalds_me_thod allows one to
increasingly important for thin-film multichip modules incor-/apidly determine the value of the periodic Green's function

porating one or more perforated ground planes to a prescribed accuracy (within a decimal place of machine

The methods used to solve the periodic aperture probleRj€CiSion) and eliminate truncation error as a major source
as well as the complementary problem, scattering from 05 error. However, neither _the original articles on Ewald’§
periodic array of plates, are various. Kieburtz and Ishimafjethod. nor subsequent articles by Cohen [12], [13], describe
investigated the aperture problem employing a variationdComPplete implementation and, in particular, how to handle
approach [1]. Chen solved both problems by discretizing thae “Self-term” in the integral equation formulation (where the
electric field or current density by orthogonal mode functiorPUrce and observation regions coincide). _

[2], [3]. Rubin and Bertoni used rooftop basis functions and 1€ Purpose of this article is to present a complete |mpl,e—
razor-blade testing functions to solve for the current on tjBentation of the exponentially converging periodic Green's
conductor surrounding arbitrarily shaped apertures [4]. THidnction for the problem involving an infinite periodic array
type of expansion is used in later work to analyze signal lin& réctangular apertures in a ground plane. The approach pre-
above a periodically perforated ground plane [5], [6]. Chan ars§nted herein employs the magn_etlc field |n§egral equation and
Mittra refine this subsectional current approximation by usir@owes for the equivalent magnetic current within the apertures.
rooftop testing functions (Galerkin’s method) [7], [8]. Pan glerkln’s method is useq to dlscretlge the mtegral equation
Zhu, and Gilbert approximate the equivalent magnetic curréffth Chebyshev polynomials and their associated weights as
ihe basis and testing functions. Entire domain functions which

above the apertures in a periodically perforated ground plal ' : X
[9]. In addition, they also use higher order basis functions tBcOrporate the edge singularity have been shown to require

accelerate convergence of the doubly infinite summation significantly fewer unknowns than subsectional basis functions
the periodic Green’s function. or functions that do not incorporate the edge singularity [14],

None of the methods above employ the exponentially cohtd]: The use of ent?re domain b_asig functi_on§ implie§ that each
verging form of the periodic Green’s function developed b9_|ement_of the admittance matrix will require mtegratlon overa
Jordon, Richter, and Sheng [10], which is based on Ewa|cpg19u!arlty when the source and observation regions 90|nC|de.

To gain full advantage of Ewald’s method, the singularity must
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screen at an angk from the normalz-direction and at angle  The magnetic-current components are assumed to have the

¢ from the z-direction. form
1- 2 &
Il. FORMULATION My =[5 —((ZZ))Q > Z MU, (x/a)Tn(y/b)  (8)
The magnetic field integral equation for the equivalent "OOO"’OOO
magnetic current which is an infinitesimal distance above an, . _ /1~ 1—(y/b)? Z Z MU (/D) Tn(fa)  (9)
aperture in a periodically perforated screen is v —(z/a)? (v "

n=0m=0

H., = ji(kQ + VV-)// M(r)G,y(r,7') dS' (1) whereM ™" are unknown cqefﬂcients a@ andU, arenth- _
kn order Chebyshev polynomials of the first and second kind,
respectively [17]. The equivalent magnetic current displays
where S denotes a single aperture of the arral/, is the an inverse square-root singularity at the edges tangential to
equivalent magnetic currenfl., is the incident magnetic the direction of the current, and it must vanish at the edges
field produced in the aperture, agd) is the three-dimensional normal to the direction of current. The Chebyshev functions

(3-D) periodic Green'’s function. satisfy both of the boundary conditions and are expected to
The spectral domain form of the 3-D periodic Green'gonverge rapidly to the solution. In a one-dimensional (1-D)
function, assuming: = 2/, is case, three to four basis functions per wavelength are often

Gz — o'y — 1) deemed sufficient [18].
P Y-y Using Galerkin’s method to discretize the integral equation
Z Z (1) yields a matrix equation with admittance elements of the
2D D, form

Y p=—o0 g=—00

. 2
eiksle—a ik (u—y) @ Y :jﬁ(/ﬂQJrVV-)Bw(—w,—y)*Bi(w,y)*Gp(w,y) (10)
Jk= ke=(2p/ Dy )b
ke=(27q/Dy)+ky where
I - 2 2 _ 1.2 ) ; ( 1= (z/a)?
whereJI?Z = ki + ki —Fk : Ewald’s transformation of thg : _( /b) ) (28 Ty (4/1),
3-D periodic Green’s function reduces to an error function (y/b) _ ‘
transform (EFT) [16] wherx = 2’ and is written as [10] Bi(z,y) = fl<i<Ne (g9
[1—(y/b)?
Gp(a:,y) = Gl(.’lj,y) + Gg(a:,y) (3) y 1— (37/ ) n(z (y/b) m(i) (.I/CL)
where L if Np +1<i< N+ Ny
1 erfe(jk. /2E) and * represents the two-dimensional (2-D) convolution op-
Gi(z,y) = 2D, D, Z Z J# eIhe iy erator. V, and IV, represent the number of basis functions
Y p=—00g=—00 IRz in the - and y-directions, respectively. The spectral-domain
(4) representation of the Green’s functions (4), (7) allows one to
1 & X, pikepDe o—ikyqDy perform the convolutions in (10) analytically. With the help
Gomy)=— > > of (A.1) and (A.2), one obtains
& R
pP=—00 g=—00 Pq 1 7
R i v 2 742N (n+ 1)(n/ + 1)(=1)m +m L
X Z [e IR erfe <RME ijﬁ>:| (5) A(i'9) _Jk 2D, D,

+

and 'Z f: <Z_§_1>

p=—00g=—00

qu = \/(37 - pDa;)Q + (y - qDy)2 (6) X Jn/+1(k5a)Jn+1(k5a)er(kcb)Jm(kcb)
fe(jk./2F f(jk./2F
where X is the summation of the positive and the negative . {er C(‘;k /2E) + < (ij/ )} (12)

argumentsE is an arbitrarily chosen parameter that splits the
computational burden between (4) and (5). The larger the valaed

of F, the more weight (4) carries. Applying the Poisson sum 2 whabjNi (m + 1)(n + 1)(_1)n,+m,+1

transformation to (5) with respect to boghand ¢ yields Yy =—J7— /W? 2D, D,
_ 1 = efGE2E) e -
GQ(-/Evy) _2Dny p_z_: q_z: TGJ T IRCY . Z Z Jn/_H(kfa)
=TOo0g=ETo P=—00 g=—0o0
(7) X T (ke @) Ty (ki b) Ton 1 (kb
Since erfcz + erfz = 1, adding (4) and (7) results in (2). ) {erfc(j'kz/QE) + erf(ﬂfz/QE) (13)
Equations (4) and (5) are the EFT of the series in (2). gk gk



48 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 1, JANUARY 1998

where N; = n' +n +m' + m, J,, is the nth-order Bessel If n; 4+n» or m; +ms- is odd, thenl; = 0. If not, the integral
function of the first kind, and the subscriptsand B denote (A.3) is used to write (17) as

a copolarization and a cross-polarization admittance term,

respectively. Directional notation has been dropped since aMVM D[(N +1)/20[(M +1)/2] 2

th_e a_dmittance elements have the same form re_garglless 1 = 5N+M 11 gy ! ﬁ
direction. The complementary error function appearing in both 2B 2

equations decays exponentially, and from (5), the error func- . - .F

. . . . : N+M+23 3

tion displays a similar exponential convergence in the space 0 s

domain. If the convolutions of (10) were performed using the N+1 N+1 N S N+1— a?
space-domain Green’s function of (5), the four-dimensional 2 7 2 2 52

(4-D) numerical integration of a singular function is required. M+1 M+ 1 M

This method is numerically tedious if high accuracy is de- Xabs| —— —5 5 thmi+Lma+1,
sired, especially if large apertures are under consideration. B2

Consequently, a more efficient means of computing the space- M+1; _—> ds (18)
domain part of the admittance element is sought. s?

where 3F5 is a generalized hypergeometric functioN, =
ni+no andM = mq +m2. One notes the conditions of (A.3)

are satisfied forV, M > 0. The generalized hypergeometric

The method employed here is to use Poisson’s sum transf@fnction is defined in (A.4). Following the same procedure,
mation of the error function terms of (12) and (13). Poissonge can write (16) as

sum transformation is defined as

I1l. RAPID SOLUTION TO THE INTEGRAL EQUATION

o | J, @V DV = 1)/2)0[(M +1)/2] 2 /2B o+h7s*
Z f(Oép) = a Z F(27rp/a) (14) 2T 2N+M ﬂllﬂg'ml'mg' \/7_r 0 sN+M
p=—00 p=—00 —
XgFg(%,N;_]- ];T—i-]. ny+1,ne+1,
where I is the Fourier transform of. If the parametel® is )
chosen large enough, only tlhe= 0, ¢ = 0 term is required to N +1; _a_>
accurately approximate the space-domain part of the Green'’s s
function, (5). Due to the singularity associated with the “self- I M4+1 M+ 1 M 1. 1,
term,” no value ofE is large enough so that the space-domain e U I T

part of the summation is negligible [16]. Since the aperture B2
is centered afx,y) = (0,0), the required inverse Fourier my+1,M+1; - ) ds. (19)
transforms reduce to

0o poo For copolarization elements, the minimum values/6fand

I = / / Iy (kea)n, (kea) J o, (keb) M are two and zero, respectively. Far > 2 and M > 0, the
TeevTee . conditions of (A.3) are satisfied. At first glance, the above inte-

. Jnlz(kcb)w dke dk; (15) grals (18) and (19) appear to have strong singularities-at,
jk= but these singularities are removable using the asymptotic

expansion of the generalized hypergeometric function.
After substituting the asymptotic expansion derived in the
Appendix for the hypergeometric function, we write (18) and

and

I, = / / "1 k‘fa nz(kfa) (19) as
ik, /2F
: Jnn(/fcb)sz(/fcb)Mdkf dhe. (16)
gk= L1 TN+ D/ +1)/2)
LT oN+Mg), n1tngtmymo!

The integral I; occurs in both copolarization admittance N
. . 9 1/2E y o Na ‘
elements (12) and cross-polarization admittance elements (13), L ks 2(0132”
VT ‘

but the integrall, occurs only in the copolarization elements. =

tJvfiit?gntr; definition of the error function (A.21), (15) can be 1 Di1821‘ I s +E332i In2 5) ds (20)
I, = a/b T[(N—-1)/2IT[(M+1)/2]
9 1/2E K252 hd K22 2 oN+M ni'nalmylmeo!
I =— e""s/ e Jp, (kea)Jn, (kea) dE N,
== B (kea)Jn, (Fca) 2 e e
°o 2.2 ﬁ 0 . ‘
X / R oy (ke b) Iy (ke b) dke ds. 17) 4 =0
—o0 + D?s* In s+ E?s* In? s) ds (21)
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where N4 is the number of terms used in the asymptotiwhere P and ) are the truncation valued; and I, are
expansions. The coefficien&®, D2, and E2 are defined as functions ofny, ne, m1, m2, a, andb defined as

i A)\7n17n2 Alfnllmlz
1

A _ (¢=1) A
Ci - lz_% CLQI b?(i—l) +Dl,i hl a
+D§‘,i Inb+E)Inalnb (22)
D} =—[D}; + D; + ENIn a+1n b)] (23)
i A)\,nl,nz Blfﬁ”’mz
A 1 (i=1)
Dr,; =2 ; Ty (24)
i Bhrme Alle’mz
A l (i=1)
Dy, =2 ; 20D (25)
i B)\,nl,nz Bli:jllmlz
l (Ct)) (26)

A
E; _4; a2l P21

21
N R PG,
Na
. Z CiLy; + D;Ly; + E{L3,;
i=0
2 a/b
T /maN+MA
]\‘r‘A
. Z CiLy; + DiLy; + E; L3,
=0

T[N+ 1)/2I0[(M +1)/2]

I
ni !712 !ml 'mQ'

(30)

LIV - D/2I0[(M + 1)/2]

I
n1 !ﬂg!ml 'mg'

(31)

where C’ is

32

whereA™ " and B;""*""* are the coefficients of the asymp-
totic approximation of the hypergeometric function that deFhe definitions ofD’ and £/ are similar, and

pend on the values oh, ni, and no,. When A = 1, the
asymptotic approximation ofF3 (ay, a1, as; by, ba, bs; —2)
is used, and whea = 2, the asymptotic approximation g¥;
(a1, ap + 1, as; by, ba, b3; —2) is used (see Appendix).

1/2E
L :/ s'(In s)' ds (33)
0

The value ofF is assumed to be large; hence, the exponewhich is easily integrated analytically.

tial term can be written as a power series as follows:

4 21
2.2 k .
6+k ¥~ E .—822.
1!

=l

(27)

IV. THE PARAMETER F

The choice ofFE directly relates to the convergence rate of
the summations in (28) and (29). The paramétareeds to be
chosen large enough so that only the 00th term is needed to

The power series (27) is multiplied with the power series jiccurately represent the space-domain part of the admittance

(22)—(26), and the result is integrated term-by-term. We ¢

write the admittance elements as

v L 2 7r4b2j]\’+]\lnl712(_1)n2+n12
A(d'd) — Jkn 2Dny

r Q
D, D, k2
47r2y(_[2—.[1)+ E E <ﬁ—1>
p=—Pg¢=-Q 3

X Iy (kfa)an (kfa)Jnll (k(b)sz (ka)

erfc(jk./2E)
BT 28
Jk- (28)
and
2 7r4abe+Mnlm2(_1)n2+mz
Y e = ’b_
B(ii) =J kn 2D, D,
r Q
D.D,
452 L+t Z Z Iny (kea)
p=—Pgq=—Q
P B E
a0 () (k) R 2E)
IRz
(29)

glement, yett should be as small as possible so the spectral-
domain part will converge rapidly. If one ignores the algebraic
decay of (5), one finds that (5) decays as

2 2 k2
exp <—quE =+ E) .

If the truncation error of the space-domain part is to be less
than exp(—1?), then

(34)

d?E? — L > 2
4F2 —

where d is the minimum distance between aperturesd i
small, £ must be large and can be approximated as

(35)

E ~q/d. (36)
If dis not small
g2 2
E_Hd2+4z/;2 (37)

will satisfy (35). There are two other constraints dit

E needs to be chosen large enough so that the asymp-
totic approximation of the hypergeometric function and the
power series expansion of (27) converge rapidly.EIf =
5/2max(1/a,1/b) then the asymptotic expansions usually
converge to 15 significant figures within five to ten terms. If
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TABLE |
CONVERGENCE OF COEFFICIENTS
N,=N, 2 42 6 82 107
M, 316.981-j167.769 | 264.975-j15.6286 | 265.120j13.6919 | 265.121-j13.6893 | 265.121-j13.6894
M2 210.941-j146.453 | -206.693-1149.910 | -206.691-j149.930 | -206.688-j149.932
M, 20 -46.219+94.480 -46.519+j98.225 -46.509+j98.234 -46.505+j98.238
2 28.594-115.511 27.730-j15.680 27.744-j15.699 27.748-j15.696
MX
1 0.31898 0.28832 0.28790 0.28790 0.28790
Rel. Time 1.0 7.5 315 111 271
E> k/_2, the power_series Qf (27) will converge rapi_dly over _ 1x10h
the entire range of integration. To summarize,s typically 9 1x10%4Y
» 3]
chosen as § 1x10%7,
= Ixloh
<
E > max{v/d,5/2max(1/a,1/b),k/2}. (38) 3 ixig“
- X
. . . 3 (/8 EENER | NEUUUESS B Y =
For small aperturega, b < 1)), the first condition dominates, § }xig,{ E=5
for medium aperture$l\ < a,b, <3)), the second condi- S btlo" ................ E=10
tion dominates, and for large aperturgs b > 3A), the third ' 1x101% E= 15
condition dominates. To determine where to truncate the g 1x1011Z -
summation, we ignore the algebraic decay of the spectral- ° Kig“’ | —— E = Infinity
. - . S’
domain summation and only use the exponential decay from = kol | w T I

60 80 100 120
P,Q

Fig. 2. The relative error of the admittance element corresponding to
n’ =n=m = m = 0 truncated atP = Q.

complementary error function. The truncation valuBs > 0
EyD,/rm and@Q > EyD,/m are appropriate.

V. RESULTS

Although the implementation of the spectral-domain part
of the admittance element is straightforward, the majority element corresponds to’ = n = m’ = m = 0. The
the computational effort goes to evaluating the summations Yaxac; IS determined by setting? = 30 and P = @@ =
(28) and (29). This is due to the four Bessel functions and tRd. As is expected, the summation converges slowelas
complementary error function that must be computed. If thecreases, but exponential convergence is observed for all
argument of the complementary error functions is imaginarfiite £. When F — oo, the admittance element reverts
the algorithm of [19] and [20], which is a refined versiorcompletely to the spectral domain and converges at the rate
of [21] and [22], can be used. If the argument is real, theRd[(pq)~1(p? + ¢?)~1/2] asp,q — .
a Chebyshev approximation can be used [23]. The Besseln Fig. 3, the real and imaginary parts of the equivalent
functions are computed using routines from NETLMBritten  magnetic current in the-direction normalized with respect to
by Cody. Efficient evaluation of; and I, relies on rapidly the incident electric field are shown. For Fig. 3, the number
computing the values of the coefficients of the asymptotisf basis functions isV, = N, = 62. This implies that the
expansion of the generalized hypergeometric functions. Tygoefficients of interest ark{»™, Mp™ for 0 < n,m < (6-1).
ically N4 = 5 is sufficient for seven significant figures ofThe superscripts: and m correspond to the order of the
accuracy anav,4 = 10is sufficient for 15 significant figures of Chebyshev polynomials as described in (8) and (9). The
accuracy. All calculations were performed in double precisiqthoices E = 10.7 and P = @ = 25 ensure 15 digits of
(16 significant figures). accuracy. Thus, the discretization error inherent in Galerkin’s

Consider a conducting plane withOA x 1.0 apertures method is the only significant source of error, i.e., truncation
and a periodicity ofD, = D, = 1.75X excited by an error is negligible. In Fig. 4, the magnitude of the normalized
incident plane waveH = 5”_‘3_]’%- For this case,E = magnetic current in the-direction along a line(y = 0)
10.7 ensures that each admittance element has convergeqgithential to the current is plotted for various basis sets

15 significant figures. Typically less accuracy is requireq‘;w = N, = N2. As expected, the solution rapidly converges.
and E can be decreased. In Fig. 2, the relative error of a |, Taple I the values of the coefficienfg®. 1792 720

copolarization admittance element truncatedfat= @ is 544 4722 are shown for differingN, = N, = N2. These
shown for differing values of the parametgr The admittance ;qefficients are the dominant coefficients that appear in all

1 Available at http://www.netlib.org/. the basis sets foV, = N, > 42. The power transmission
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1.6 —
1.4 s ‘
s g 121 N
E E 1 / I\
= = ] AT T | Y
':H g\ 08 / y ~ \
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T il \
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0.2 \
0
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X
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—-—--N=N=42 —— N=N=10?

Fig. 4. The magnitude of the normalized magnetic current inctirection
along a line(y = 0) tangential to the current for various sets of basis
functions. The geometry of the problem is identical to that of Fig. 3.

1

209 s |
20 |
g c\
e, [ 0.7- ( ]
- e (_O) 1 ( ] [
i I L = 0.6
e e 2] ] P
e R 2057 ® fe
Tl E ] *
-0 1] Z 0.4+
L& A So3 1 Ae
_ = i e — Calculated
Fig. 3. The real and imaginary part of thedirected magnetic current nor- 20-25 °
malized with respect to the incident electric fiit= jne—7%%. The aperture 2014 ® Measured [24]
dimensions are = b = 0.5\ and the periodicity isD, = Dy = 1.75A. ] | | l ‘ ' ‘ ‘
955882855878
coefficient 7 is shown for the various basis sets, and the S oSS oS0 SS S =~ -
transmission converges to five digits of accuracy My = D,

o ; . > :
Ny = 6°. The r9|aF|Ve time reqU”?d to S.Olve_the 'megra{kig. 5. The magnitude of the power transmission coefficient versus period-
equation for the various sets of basis functions is also shovigity D... The aperture dimensions are= b = 0.39D,,, and the incident

This time includes both the matrix fill and matrix solve timdnagnetic field isH = &e=/"=.

and is normalized with respect to the time required for the

N, = N, = 22 case. It should be noted that the value ) )

E = 10.7 overly restricts the efficiency for this example.Bf ©Of rectangular apertures. The technique is based on Ewald’s

is dropped to 5.4 (ensuring eight significant figures of accurafjethod for accelerating the periodic Green’s function, which

in the admittance elements), théh= Q = 7 and the time if used correctly, reduces the truncation error so that it is

required for theN,, = N, = 62 case is reduced by 87% with negligible compared to the discretization error. This method

no significant change in the dominant coefficients. works very well for small-to-medium size apertures. As the
In Fig. 5, the power transmission coefficient versus perio@pPerture size increases, also increases, making the spectral-

icity is presented. The magnetic fiell = #¢~7*- is incident domain summation more expensive.

on an array of square apertures= b) with a periodicity of Although this technique is discussed in the context of rectan-

D, = D,. The ratio of aperture size to periodicity is heldyular apertures, it can be generalized to other aperture shapes.

at a = 0.39D,. The power transmitted is compared to thdhe integral (A.3) is derived by converting the product of two

measured data from [24]. Good agreement is obtained betw&gssel functions into the hypergeometric functiohs. The

the two. integral from zero to infinity of the hypergeometric function

~Fm multiplied by a Gaussian function is the hypergeometric

function,, 11y [27]. Thus, the technique can be generalized
A method is presented for rapidly and accurately solvinghen the spectral-domain representation of the basis and

the magnetic field integral equation for doubly periodic arragsting functions can be expressed in terms of a hypergeometric

VI. CONCLUSION
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function and the basis and testing functions are centered abmtgral equals the sum of the residues2r) of the simple

the same pointo = 2/, y = ¢/, andz = 2/). poles from thel'(s) term. Thus, one regains (A.4). Equation
(A.5) is equivalent to using the definition of the Meijer G
MATHEMATICAL APPENDIX function to express the hypergeometric function [25]-[27].

To obtain an asymptotic approximation §F3 (a1, ao, as;
1 b2, b3; —2), we extend the path of integration clockwise
to form a semicircle encompassing the positive real values for
s. If a; andas do not differ by an integer then the integral is
evaluated by summing the residues from the simple poles at
The Fourier transforms of the Chebyshev basis functioBs= a; + n, a> +n, az + n. If a; — ay does equal an integer,
are given by the following integrals [17]: some or all of the poles will be double poles and one must
T (2 fw)eise differen_tiate the n_onsingular part of the integrqnd of (A.5) to
L dr =qwj"J.(w¢) (A.l) determine the residue. There are two cases of intefest a,

This appendix summarizes several results used in the pre-
vious sections.

A. Useful Integrals

—w /1= (x/w)? anda; = a» — 1. For the case; = a», the residues are
| VI @R/ do =m0l Ta = e = )

(AZ) S—>a1+nr(b1 - S)F(bg - S) (bg - S)
= R2z~(@+)(R: —1n z) (A.6)
The following integral is used in determining the space-domain
contribution of the 00th plate [see (17) and (18)] [25]: where

/ gl Ju(Px)J,(fr) dx R, = _2\1;(”) + ¥(ay +n) — Y(az —ay —n)
0
_ (B2 Dl(p+rv+2)/2] +> Wb —ay —n) (A7)
© 2av A Dy + DI+ 1) ‘
I'ay +n)'(as — a1 — n
X3F3{1/+/;+171/—;—u+171/+g+A; R?L: (a1 3) (a3 1 ) (A.8)
52 (n!)QHF(bi —a;—n)
v+lLp+lrv+p+li——| (A3) i=1
&
andV is the digamma function. For the cage= a, — 1, the
whereRe(A + 2 + v) >0 and Re(a?) > 0. residues from the double poles are

bt

<

B. Asymptotic Approximation ¥ (ay, a2, as; b1, b2, b3, —2)  Res I(ay — 5)l'(a1 +1 - 5)['(a3 — $)I'(s)

Methods are readily available for determining the asymp- ' L(by = 8)T(bz = 5)T(bs = 5)

2 —(a1+n
totic approximation of generalized hypergeometic functions if = Rz (et )(R —In z) (A.9)
a1, ag, az do not differ by an integer [26], [27]. From (18)
where
and (19),a; — a2 will equal zero or one; hence, we need to
derive an asymptotic approximation that is valid far— as RL=T(n+1)+ ¥(n) — Ulay +n) + U(as — ar — n)
equal to an integer. The functigy¥’; (a1, a2, as; b1, bs, bs3; "

3
—z) is defined as - Z U(b; — a1 —n) (A.10)

Fs(a1,a9,a3;b1,b2,b3;—2
3l3(ay, 2(,()13 1,02 33) i)EF a1+ m) (s ) R — INCH +n)?1)“(a3 —a1—n) ' (A11)
~ T(an)l(a2) (as) = Db+ n)L(b2 + 1) nl(n — D0 — a1 —n)
F(az + n) (=2)" (A4) =t
I(bs +n) n! The residue from the single polesat a; is R32~%. For both
wherel is the Gamma function. We can write the above seri€8Ses, the residues from the single poles atas + » equal
in terms of the following inverse Mellin transform: N (a1 — ) (a2 —s)D(az— )F(S)Z_S:R?’z_(a3+n)
sl3(a1, az, a3;b1,b2,b3;—2) s—aatn L'(by — s)I'(by — 5)I'(b3 — s) "
_ 1 P62 (bs) /ﬁioo I(a1 — s)l'(as — 3) (A12)
2r P'(a)l(a2)l(a3) Jy—ico L'(b1 — s)I'(b2 — 5) where
%z—s ds. (A.5) R = I(a; — a3 — Z)F(ag —az —n)'(as + n) (A13)
Extending the path of integration counterclockwise to make a n!HF(bi —a;—n)

semicircle with a radius of infinity, one finds the value of the
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Using the values of the residues, the asymptotic approximatién The Error Function

for hypergeometric function in (18) is

3l3(ay, a1, a3; 01,092,035 —2)
= Z Az~ () L po—(ati) |y 5 4 ¢, (as+9) (A.14)

where for general arguments;( as, as, by, b2, b3):

_ TEOT)T(bs) 1 e

A= F((algriafzgrgag)) R, (A.15)
(b)) (b)) (b3 )

o _F((GI;FE@;FE%)) R, (A.16)
(b)) (b)) (b3 5

€= _F(al)r(ag)r(ag)R"' (A.17)

The hypergeometric function in (19) has the asymptotic
pansion

3l3(ar, a1 +1,a3; b1, b2, b3; —2)
— Z A0t 4 poy—(artldd) 1y 5 4 o~ (asti)

(A.18)

The error function and the complementary error function
are defined, respectively, as

2 # 2
erfz = — / e du (A.21)
v Jo

erfcz =1 —erfz = % L e du. (A.22)

As z — oo, the complementary error function behaves as

(1]
(2]
ex-
(3]
(4]
(5]

(6]

where A, B, and C are defined similar to (A.15)—(A.17),

except A9 = R3. For the values of the arguments, by,
by, bz under consideration in (18) and (193 = 0 and,
consequently,C; = 0. This is becauseis, b, b2, and bs
differ by integers and:z < b1, bs; hence, eithel'(b; — a3)
or I'(by — a3) will equal infinity. This means that al} F5
functions generated in (18) and (19) are reducible, o
or combinations ofyF,. For example, ifny ny then
N/24+1=mn;+1=mny+1; hence

N+l N+1 N
3F3<

- - 75—i—l;nl—i—l,ng—i—l,N—i—l;—22>

2 7 2
N+1 N+1
=2F2<

55 i 1,N +1; —22>. (A.19)

If n; =2 andny = 0 (or vice-versa) in (18), we obtain

33
3Fg<§,§,2;1,3,3;—z2)
33 22 55
= oIy (=, 533,322 ) = | 5 o Bl =, =34, 4 =22 ).
22<272777 7) <4>2 2<272777 7)

(A.20)

Further details on obtaining an asymptotic expansion fro

(7]

(8]

(9

[10]

[11]
[12]
[13]

[14]

[15]

[16]

(17]

a power series can be found in [28]. It should be noted that the
above asymptotic approximation is only valid for large positive

values ofz. Due to the essential singularity at= —cc, (A.4)

19
cannot be used to obtain an asymptotic approximation val[|d

for z < 0. For large negative values farwhere higher order 20]
terms dominate the summation of (A.4), the hypergeometrllc

function increases exponentially withz.

_Z2

e
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